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* Review the process of reinforcement learning
* Transformers in decision-making tasks
* Gato: a generalist agent

e Discussion and prospects



Overview of RL Training Paradigms

(a) online reinforcement learning (c) offline reinforcement learning
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(b) off-policy reinforcement learning

* Though both off-policy RL and offline RL
evaluate the policy using the data sampled

rollout data {(Si, a;, S;: T’i)}

7] ) from a replay buffer, they are different.
D
@ Tk ¥ * The key difference is whether the agent can
update interact with the environment while learning
roIIout / 7Tk_|_1 ] ]
¥ M1 ] e Offline RL techniques help deploy RL to real-

world applications

Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems." arXiv 2005.01643 (2020).



Advantages of Offline RL

e Offline RL can help

1. Pretrain an RL agent using an existing dataset

2. Empirically evaluate RL algorithms based on their
ability to exploit a fixed dataset of interactions

3. Bridge the gap between academic interest in RL and
real-world applications

e Offline RL makes RL more like supervised learning
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Gulcehre, Caglar, et al. "RL unplugged: Benchmarks for offline reinforcement learning." arXiv preprint arXiv:2006.13888 (2020).



Extrapolation Error in Offline RL

Q(s,a) < (1 = a)Q(s,a) + a(r + ymaxQ(s',a’))
. !
* Extrapolation error is introduced by the  whatifa’ is an out-of-
mismatch between the dataset and true distribution action?

state-action visitation of the current policy.
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Overview of Offline RL Methods

Model-free Methods
e Conservative | * Self-
value / policy | imitation
. BCQ .+ BC(%)
* BEAR * AWR
* BRAC :  BAIL
+cal.. | ot

Model-based Methods

* Uncertainty estimation with
the learned model
* MORelL
* MOPO
* COMBO

* The most severe problem that offline RL faces is the extrapolation error,
i.e., the out-of-distribution problem: What if the agent performs unseen

state-action?

* Implicit constraint methods directly learn the policy on the data support

e with data instance selection or weighting




Behavior Cloning as Offline RL

* Behavior cloning, the simplest imitation learning
method, requires no environment interaction

Behavioral policy

training supervised

I : 7T9(at |0t)
Aot earning

* Learning objective of BC ~ Behavioral policy

i = arg max Eswd,, Eacrp(s)|logm(als)]
* Obvious shortcomings of BC

1. The policy upper bound is the behavioral policy
2. Distribution shift



AWR: Advantage-Weighted Regression

* Policy optimization objective

J( 'rwp [Z YTt

Expected improvement
n(mw) = J(m) — J(u) [as derived in TRPO]
— IEj’Smalﬁ (S)Eamﬂ(a|s) [AM (S, a)} — IEj’s.mdﬁ (S)Eamﬂ(a|s) [R’:’a — VM<S)}

* Based on reward-weighted regression (RWR)

1
M1 = arg max  Es oy (s)Eavr,(als) llog mw(als) exp (ERsa>]
" t
return
* Regarded as solving a maximum likelihood problem that fits a
new policy to samples collected under the current policy, where

the likelihood is weighted by the exponentiated return.

— ESNd )anvr(a|8) [T(S: a)}

Xue Bin Peng et al . Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.



Return

AWR: Advantage-Weighted Regression

?

N AR e RN AR t ANCZTAANCZ2IANNZZT IR
(a) Humanoid: Cartwheel (b) Humanoid: Spinkick

- B o B = i S 1
T ] | J |
EE SR e e o Ra e EEEE
= \\\/\\/1\ /_T\\Hl{utlww I A
(c) Dog: Trot (d) Dog: Turn
HalfCheetah-v2 Hopper-v2 Walker2d-v2

1750

4000 A 1500

1250
3000 4
1000

2000 4 750

500

10004
250

BC PPO TD3 SAC BCQ BEAR AWR BC PPO TD3 SAC BCQ BEAR AWR BC PPO TD3 SAC BCQ BEAR AWR BC PPO TD3 SAC BCQ BEAR AWR

* Performance of various algorithms on off-policy learning tasks with
static datasets. AWR is able to learn policies that are comparable or
better than the original demo policies.

Xue Bin Peng et al . Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.



BAIL: Best-Action Imitation Learning

* BAIL does not suffer from the extrapolation error, since it does not
maximize over the actions space.

e Step 1:learn an upper envelope of state by solving a constrained
optimization problem:

@ 400 O s00{ — er Envelope
m 'OL% 'UL% 400 LI\jIFépRetirnsI ) J
K 2 S'g %o 59
LR(0) =) (Valsi) = G {1, (s)26)  8E 28 o
1=1 % gmo . e % :1;)_ 100
—— Upper Envelope
+ K : ﬂ(‘/(b(si)<Gi)} + )\Hﬂ)HQ n:% 0 MC Returns m%—m(o)
© 2000030000900003000f0000° © 000985000g000080009}0000°
» Step 2: Select actions satisfying y State " |Is<tat82d
. opper alker
G; > x V(s;) to perform simple PP
imitation learning (BC). x is set such 5 ™ g S| T Ueper nvelope
that 25% samples are selected. 52 7 5%
cCw 0 cw
 Step 3: perform supervised learning  ©5& 0| — upperenveiope | 85 °
S MC Returns D -50
(BC) on selected data e T o s
200003600080000560033,0000 20000300008000055000/40000
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X. Chen et al. BAIL: Best-action imitation learning for batch deep reinforcement learning. NeulPS 2020.



BAIL: Best-Action Imitation Learning

ENVIRONMENT BAIL BCQ BEAR BC MARWIL
o = 0.1 HOPPER B1 2173 + 291 1219+ 114 505 &+ 285 626 £ 112 827 £ 220
o =0.1 HopPER B2 2078 &= 180 1178 £ 87 985+ 3 579 £+ 141 620 = 336
oc=0.1 WALKER Bl 1125 +113 576 &+ 309 610 £ 212 5144+ 17 436 £ 24
o =0.1 WALKER B2 3141 % 300 2338 4+ 388 2707 £ 425 1741 £ 239 1810 £ 200
oc=0.1HCBI 5746 + 29 5883 + 43 0£+0 5546 + 29 5573 + 35
o=0.1 HC B2 7212 + 43 7562 + 31 040 6765 £+ 108 6828 + 111
o = 0.5 HOPPER B1 2054 + 158 1145 &+ 300 203 £+ 42 919 £ 52 946 £+ 103
o = 0.5 HOPPER B2 2623 + 282 1823 + 555 241 + 239 694 + 64 SI8 £+ 112
o = 0.5 WALKER B1 2522 + 51 1552 4 455 1248 + 181 2178 £ 178 2111 £ 52
o =0.5WALKER B2 3115+ 133 2785+ 123 2302 £+ 630 2483 £+ 94 2364 £ 228
o=05HCBI 1055+ 9 1222 + 38 924 4+ 579 570 £ 35 512443
o=0.5HCB2 7173 +£ 120 5807 £ 249 —114+ 140 6545 +171 6668 =93
SAC HOPPER B1 3296 £+ 105 2681 £ 438 1000 £ 110 2853 &+ 318 2897 £ 227
SAC HOPPER B2 1831 £ 915 2134 £+ 917 1139 £317 2240 £ 367 2063 + 168
SAC WALKER B1 2455 + 211 2408 + 84 —3£5 1674 £ 277 1484 £ 140
SAC WALKER B2 4767 £+ 130 3794 &+ 398 325+ 75 2599 £ 145 2651 &+ 268
SAC HC Bl 10143 =77 8607 £ 473 7392 £ 257 8874 £ 221 9105 + 90
SAC HC B2 10772 +59 10106 =134 7217 £ 273 9523 £ 164 9488 £ 136
SAC ANT B1 4284 + 64 4042 + 113 3452 £ 128 3986 £112 4033 £+ 130
SAC ANT B2 4946 + 148 4640 + 76 3712 4+£236 4618 £111 4589 + 130
SAC HumaNoOID B1 3852 + 430 1411 £ 250 0+0 543 £ 378 589 £ 121
SAC HumaANOID B2 3565 + 153 1221 £ 207 0+0 1216 £ 826 1033 £ 257

X. Chen et al. BAIL: Best-action imitation learning for batch deep reinforcement learning. NeulPS 2020.
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Upside-Down RL

« Solve RL Problem with supervised learning methods?

Q-value function

Observation
Value
(expected
return)
Action

Key paper references

Behavior Function

Observation
(St17 (drv dh))
dh =ty — ty

t
d?“ = t2:t1 ’)"t
Command

(desired return,
desired horizon)

» Srivastava, Rupesh Kumar, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jirgen
Schmidhuber. "Training agents using upside-down reinforcement learning." arXiv preprint

arXiv:1912.02877 (2019).

* Schmidhuber, Juergen. "Reinforcement Learning Upside Down: Don't Predict Rewards--Just
Map Them to Actions." arXiv preprint arXiv:1912.02875 (2019).



Upside-Down RL

 Algorithms and experiments

(a) LunarLander-v2 (b) TakeCover-v0

Algorithm 1 Upside-Down Reinforcement Learning: High-level Description. s

: Initialize replay buffer with warm-up episodes using random actions
: Initialize a behavior function
: while stopping criteria is not reached do
Improve the behavior function by training on replay buffer
Algorithm

1
200
2
3
4
5:  Sample exploratory commands based on replay buffer
6 R DN
7
8
9

150
100

50

Mean Return (100 episodes)

Generate episodes using Algorithm 2 and add to replay buffer :
. . —-100 A2C
if evaluation required then —— UDRL
Evaluate current agent using Algorithm 2 0.0 02 0at o6 08 10,

Environment Steps

end lij (a) On LunarLander-v2, Td is able to train agents that land the
10: end while spacecraft, but is beaten by traditional RL algorithms.

Algorithm 2 Generates an Episode using the Behavior Function. aketover- vl

Input: Initial command ¢y = (df, d?), Initial state s, Behavior function B(; )

Output: Episode data £ % 0
1: E+ @ é_
210 S o il
3: while episode is not over do = O Lol
4 Compute P(as|st, ct) = B(sy, ¢t 60) ;f 300 ‘ »\1, ’VW‘J\W
5:  Execute a; ~ P(ay|s¢, ¢;) to obtain reward r; and next state s, 1 from the environment E v/ fie 'W/ Aigorithn
6 Append (s¢,a¢,7¢) to E = 200 — DQN
7 8 4 Spiq // Update state i :‘;(;L
8 dy +—dj—r // Update desired reward 100
9 dPl —dl—1 // Update desired horizon 84 b2 Eli)\',fr onment &2[)3 b il

10: ¢ < (df,d})
11: t+t+1 (b) On TakeCover-v0, T is able to consistently yield high-
12: end while performing agents, while outperforming DQN and A2C.




Transformer for Sequence Modeling

e Encoder

* Inputs: A sequence of
vectors (words/states)

e Qutputs: A sequence of

representation
* Decoder
e Q: Start token + previous
results -> Q
e K& V:Outputs of
encoder

e QOutputs: A sequence of
symbol (labels/actions)

Qutput
Probabilities
-
Add & Norm
Feed
Forward
r 1 ~\ I Add & Norm |<_:
geete Honn Multi-Head
Feed Attention
Forward 7 7 Nx
| —
Nx Add & Norm
Add & Norm T asked
Multi-Head Multi-Head
Attention Attention
A Py A 2
\_ J \_ )
Positional @_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Attention in Transformer

class CausalSelfAttention(nn.Module):

Multi-Head Attention def __init_ (self, config):

super().__init_ ()

config.n_embd % config.n_head )
Concat

self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)

] T self.attn_drop = nn.Dropout(config.attn_pdrop)
L self.resid_drop = nn.Dropout(config.resid_pdrop)
Scaled Dot-Product ’Z H . : . .
Attention N self.proj nn.Linear(config.n_embd, config.n_embd)

1 self.register_buffer("mask", torch.tril(torch.ones(config.block_size + 1, config.block_size

" - . .view(1l, 1, config.block_size + 1, config.block size + 1))
[ Split ] [ Split ] [ Split ] self.n_head = config.n_head
1 forward(self, x, layer_past=None):

[Linear] [Linear] [Linear] B, T, C - x.size()

\ K Q self.key(x).view(B, T, self.n_head, C self.n_head).transpose(1, 2)
self.query(x).view(B, T, self.n_head, C self.n_head).transpose(1, 2)
self.value(x).view(B, T, self.n_head, C self.n_head).transpose(1, 2)

(q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
k1 k2 k3 k4 att.masked_fill(self.mask[:, :, :T, :Tl 0, float('-inf'))
q]_ F.softmax(att, dim=-1)
self.attn_drop(att)
q2 att @ v
q3 y.transpose(1l, 2).contiguous{().view(B, T, C)
q4

self.resid_drop(self.proj(y))
y




Attention in RNN vs. Transformer

 Whether to use recent architecture or position embedding?

X2l (X3 [Xa| [Xs Xe| |X7

A A A A A A

[ Attention Layer }

A A A A A A
x1Hx2Hx3HX4Hx5HX6
Here the same recent weights are
used for multiple times of recent

calculation, which introduce
compounding error when decoding

X2 |X3| |Xa| |Xs| |Xe| |X7

A A A A A A

[ Attention Layer }

Position embedding does not
introduce such a compounding
error when decoding



Decision Transformer

e Re-build RL task as a sequence prediction problem

e Causal transformer: GPT (i.e., decoder-only transformer)

Output
Probabilities

\
( (Ao o)

. causal transformer . Fgr?'ve:rd

= L | ™
Add & Norm

@ @ Masked

t-1 t-1 t-1 t t t Multi-Head

Attention
. \_ J
Positional
¢ Encoding
Output
Embedding
[

Outputs
Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." NeurlPS 2021. (shifted right)



Decision
Transformer

% lir 16(11 dec )1 %

causal transformer

emb. + pos. enc.

®.0.0.0.0 6

+ i
O

States, actions, and
returns are fed into
modality-specific linear
embeddings and a
positional episodic
timestep encoding is
added.

Tokens are fed into a GPT
architecture which
predicts actions
autoregressively using a
causal self-attention mask

Algorithm 1 Decision Transformer Pseudocode (for continuous actions)

R, s, a, t:
transformer:
embed_s,
embed_t:
pred_a:

returns -to-go, states, actions, or timesteps
transformer with causal masking (GPT)
embed_a, embed_R: linear embedding layers
learned episode positional embedding

linear action prediction layer

HHE-EHREHR

# main model

def DecisionTransformer(R, s, a, t):
# compute embeddings for tokens
pos_embedding = embed_t(t) # per-timestep (note:
s_embedding embed_s(s) + pos_embedding
a_embedding embed_a(a) + pos_embedding
R_embedding embed_R(R) + pos_embedding

not per-token)

s_K)
a_embedding)

# interleave tokens as (R_1, s_1,
input_embeds = stack(R_embedding,

a_l, ..., R_K,
s_embedding,

# use transformer to get hidden states
hidden_states = transformer (input_embeds=input_embeds)

# select hidden states for action prediction tokens
a_hidden = unstack(hidden_states).actions

# predict action
return pred_a(a_hidden)

# training loop

for (R, s, a, t) in dataloader: # dims: (batch_size, K,
a_preds = DecisionTransformer (R, s, a, t)
loss = mean((a_preds - a)**2) # L2 loss for continuous actions
optimizer.zero_grad(); loss.backward(); optimizer.step()

dim)

# evaluation loop
target_return = 1 # for instance, expert-level return
R, s, a, t, done = [target_return], [env.reset()], [],
while not done: # autoregressive generation/sampling
# sample next action
action = DecisionTransformer(R, s, a, t)[-1]

new_s, r, done, = env.step(action)

[1] 2

False

# for cts actions

# append new tokens to sequence

R =R + [R[-1] - r] # decrement returns-to-go with reward
s, a, t = s + [new_s], a + [action], t + [len(R)]

R, s, a, t = R[-K:], # only keep context length of K




Decision Transformer Experiments

* Results comparing Decision Transformer to TD learning (CQL) and behavior
cloning across Atari, OpenAl Gym, and Minigrid.

=== [Decision Transformer (Ours) === TD Learning === Behavior Cloning

Atari OpenAl Gym Key-To-Door

-
o
o

50

Performance

* Sampled (evaluation) returns accumulated by Decision Transformer when
conditioned on the specified target (desired) returns.

Breakout Qbert Pong Seaquest
@ 300 - 100 1 - 1 - 3 [ -
9 ”a I ”’ 150 I,f’ [ =
At H £ 200 I - 100 2 [ =
arl 5 —- 50 1 ”’ 1 P
-
£ 100 - | - 50 1 1 L-
& - - I -1
[ 0 [ [
0 100 200 300 0 20 40 60 80 100 0 50 100 150 0 1 2 3
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[} 1 - - ar -
D4R|_ g w0 - 100 ’J 100 _-="0 20 P
o -
. £ | = 1 -
medium- 5 === 50 = I 50 T -
& - 1 - 1 - 1 M—
Q ” l ” l = | -
replay *°~ 0o - 0o - 0o -
0 10 20 30 40 50 0 25 50 75 100 0 25 50 75 100 0 5 10 15 20 25

Target Return (Normalized) Target Return (Normalized) Target Return (Normalized) Target Return (Normalized)
= Decision Transformer == QOracle - Best Trajectory in Dataset

Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling."” NeurlPS 2021.



Decision Transformer Experiments

* Results comparing Decision Transformer to TD learning (CQL) and behavior
cloning across Atari, OpenAl Gym, and Minigrid.
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* Sampled (evaluation) returns accumulated by Decision Transformer when
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Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling."” NeurlPS 2021.



Decision Transformer Experiments

* Does Decision Transformer perform behavior cloning on a

subset of the data?

OpenAl Gym D4RL

Dataset Environment DT (Ours) 10%BC 25%BC 40%BC 100%BC CQL
Medium HalfCheetah 42.6 + 0.1 42.9 43.0 43.1 43.1 444
Medium Hopper 67.6 1.0 65.9 65.2 65.3 63.9  58.0
Medium Walker 4.0+ 14 78.8 80.9 78.8 7.3 79.2
Medium Reacher 51.2+ 3.4 51.0 48.9 58.2 584  26.0
Medium-Replay  HalfCheetah 36.6 £ 0.8 40.8 40.9 41.1 4.3 46.2
Medium-Replay  Hopper 82.7+7.0 70.6 58.6 31.0 27.6  48.6
Medium-Replay =~ Walker 66.6 £ 3.0 70.4 67.8 67.2 36.9  26.7
Medium-Replay ~ Reacher 18.0+ 2.4 33.1 16.2 10.7 5.4 19.0

Average 56.1 56.7 52.7 49.4 39.5  43.5
Atari Offline
Game DT (Ours) 10%BC 25%BC 40%BC 100%BC

Breakout 267.5+97.5 28.5+8.2 73.5+6.4 108.2£67.5 138.9+61.7

Qbert 15.1+11.4 6.6 1.7 16.0£13.8 11.8+5.8 17.3+14.7

Pong 106.1 + 8.1 2.5 +0.2 13.3 £ 2.7 72.74+13.3 85.2 + 20.0

Seaquest 24+0.7 1.1 +0.2 1.1 £0.2 1.6 0.4 2.1+0.3

Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling.”" NeurlPS 2021.



Decision Transformer Experiments

* Credit assignment over long horizon

* A grid-based environment (Key-to-door) with a
sequence of three phases:
1. inthe first phase, the agent is placed in a room with a key;
2. then, the agent is placed in an empty room;
3. and finally, the agent is placed in a room with a door.

* The agent receives a binary reward when reaching
the door in the third phase, but only if it picked up
the key in the first phase.

Key-to-door
Dataset DT (Ours) CQL BC %BC Random
1K Random Trajectories 71.8% 13.1% 1.4%  69.9% 3.1%
10K Random Trajectories 94.6% 13.3% 1.6% 95.1% 3.1%

TD learning (CQL) cannot effectively propagate Q-values over the long horizons involved
and gets poor performance

Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." NeurlPS 2021.



Trajectory Transformer

Offline RL as a sequence prediction problem

Build a world model for RL task

DD PDE@ - BE

Trajectory Transformer
o /

P11 [ [

- DH0 - HHH8 @

Discretize each dimension independently

T = (S]_,&]_,T],ngag,?"g,...,ST,aT,T'T)
= (...,sijsf,...,siv,a%,af,...,aiw,rt,...) t=1,....T.
* Training loss
T N M
L(T)= Z (Zlog Py(sy | sT' T<t) —I—Zlog Py (a{ | afj,st,'rd) +1log Py(r: | at,st,'rq))
t=1 i=1 j=1

Janner, Michael, et al. “Offline reinforcement earning as one big sequence modeling problem." NeurlPS 2021.



Trajectory Transformer

e Offline RL as a sequence prediction problem

e Build a world model for RL task

\
oo ()0l - DEDGEDED - G ) -
T A A
,

r 1 1 rr f

<
Trajectory Transformer
o /

P11 [ [

- DH0 - HHH8 @

TT is similar with DT, but:

DT is based-on UDRL, could be used as policies directly, while TT is a world model.
* Inputs all elements and predicts all (trajectories and rewards).

e Applicable in more cases, e.g., imitation learning, goal-conditioned
reinforcement learning, and offline reinforcement learning.

Janner, Michael, et al. “Offline reinforcement earning as one big sequence modeling problem." NeurlPS 2021.



Trajectory Transformer

& C=n-OF O O i @ Ck

el

= R a

: . ) &J Ground truth
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: e

“g J . ‘ Trajectory Transformer
=

=

5

-

?g PETS: probabilistic Gaussian NNs
e

Partially-Observed Humanoid . ,
e With transformer’s

ability, TT shows
superior planning
50 performance then
. the SOTA single-step
| inference model
10 20 30 40 50 10 20 30 40 50
timestep timestep PETS (Feedforwa rd)

= Transformer === Markovian Transformer === Feedforward === Discrete oracle

log likelihood
log likelihood

Janner, Michael, et al. “Offline reinforcement earning as one big sequence modeling problem." NeurlPS 2021.



Trajectory Transformer Decision Making

* Taking actions via planning with beam search

Algorithm 1 Beam search

Initialize Y, = { () }
fort=1,..., T do

Ci<{yvs 1oyly; 1 €Y, jandy € V}

[ U R S

Y: « argmax log Py(Y | x)
YCC:, |Y|=B

end for

Return argmax log Py (y | x)
yEYT

N

Require Input sequence x, vocabulary V, sequence length 7', beam width B

// candidate single-token extensions

// B most likely sequences from candidates

* Planning in three tasks

* Imitation learning
* Setting x = (T, St)

Beam width
Planning horizon
Vocabulary size
Context size

Kobs

Fact

maximum number of hypotheses retained during beam search
number of transitions predicted by the model during

number of bins used for autoregressive discretization

number of input (s;, a;, ry, R;) transitions

top-k tokens from which observations are sampled

top-k tokens from which actions

* Goal-conditioned RL (st as goal)
* Setting the input trajectory as (s, T<¢, S¢)

» Offline RL (seek for the highest return)

* Keep the top reward + reward-to-go (R; = Z?zty

’— . -
Y'=ty.1) trajectories as Y;




Trajectory Transformer Experiments

e Offline RL performance comparison

over 15 random seeds

Dataset Environment BC MBOP BRAC CQL DT TT TT
Med-Expert  HalfCheetah 59.9 105.9 41.9 91.6 86.8 40.8 £2.3 95.0 £0.2
Med-Expert  Hopper 79.6 55.1 0.9 1054 107.6 106.0 £0.28 110.0 £2.7
Med-Expert  Walker2d 36.6 70.2 81.6 108.8 108.1 91.0 £2.8 101.9 +6.8
Medium HalfCheetah 43.1 44 .6 46.3 44.0 42.6 44.0 £0.31 46.9 £0.4
Medium Hopper 63.9 48.8 31.3 58.5 67.6 67.4 £2.9 61.1 £3.6
Medium Walker2d 77.3 41.0 81.1 72.5 74.0 81.3 £2.1 79.0 £2.8
Med-Replay  HalfCheetah 4.3 42.3 47.7 45.5 36.6 44.1 £0.9 41.9 £2.5
Med-Replay  Hopper 27.6 12.4 0.6 95.0 82.7 09.4 £3.2 91.5 £3.6
Med-Replay ~ Walker2d 36.9 9.7 0.9 77.2 66.6 79.4 £3.3 R2.6 £6.9

Average 47.7 47.8 36.9 77.6 74.7 72.6 78.9

. - 1 Offline averages per

TT performs on par with £ ] algorithm in above table
or better than the best E
prior offline s
reinforcement learning , 2
algorithms on D4RL T wbr e e e T (quantile
IocomOtlon (V2) taSkS' Behavior Cloning Trajectory Optimization Temporal Difference Sequence Modeling

Janner, Michael, et al. “Offline reinforcement earning as one big sequence modeling problem." NeurlPS 2021.



The Progress So Far

Transformer
e Currently most powerful sequential model, derived from NLP
* Long-sequence modeling capabilities
e Capable for large volume of parameters
e Stronger generalization

Upside-down RL
* Theoretical foundation of DT
* Solves reinforcement learning problems with supervised learning methods

Decision Transformer
e Based on UDRL, could be used as policies directly

* Perform credit assignment directly via self-attention, bypass the need for bootstrapping
for long term credit assignment

* Avoids the need for discounting future rewards, which can induce undesirable short-
sighted behaviors

* Avoids value overestimation

Trajectory Transformer
e Similar with DT in implementation, but inputs all and predicts all
* More like a world model

* Applicable in more cases, e.g. , imitation learning, goal-conditioned reinforcement learning,
and offline reinforcement learning



Content

* Review the process of reinforcement learning
* Transformers in decision-making tasks
e Gato: a generalist agent

e Discussion and prospects
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* From specialist agents in RL to generalist agents

* Prospects
* Reduce the need for handcrafting policy models.

 Generic models have tended to be better than domain-
specific approaches.



Gato: A Generalist Agent

* Handle a variety of tasks with different types of data

e Multi-modal, multi-task, multi-embodiment: agents have different characteristics
in different domains, e.g., shape, action spaces ...

What is the capital of

@ France?

Paris. G

¢ Can you write me a poem?

I don’t know exactly what
to write. There’'s just so
much to answer.
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Gato Model - Tokenization

* Modality-specific tokenization

» Text is encoded via SentencePiece (Kudo and Richardson, 2018) with 32000 subwords into the
integer range [0, 32000).

» Images are first transformed into sequences of non-overlapping 16 x 16 patches in raster order,
as done in ViT (Dosovitskiy et al., 2020). Each pixel in the image patches is then normalized
between [—1, 1] and divided by the square-root of the patch size (i.e. V16 = 4).

» Discrete values, e.g. Atari button presses, are flattened into sequences of integers in row-major
order. The tokenized result is a sequence of integers within the range of [0, 1024).

» Continuous values, e.g. proprioceptive inputs or joint torques, are first flattened into sequences
of floating point values in row-major order. The values are mu-law encoded to the range [-1, 1]
if not already there (see figure 13 for details), then discretized to 1024 uniform bins. The
discrete integers are then shifted to the range of [32000, 33024).

After converting data into tokens, we use the following canonical sequence ordering.

Text tokens in the same order as the raw input text.

Image patch tokens in raster order.

* Tensors in row-major order.

Nested structures in lexicographical order by key.

Agent timesteps as observation tokens followed by a separator, then action tokens.
Agent episodes as timesteps in time order.



Gato Model - Tokenization

* The data is sequenced as follows

» Episodes are presented to the agent in order of time (timesteps).
» Timesteps in turn are presented in the following order:

— Observations ([y1:x, x1:m, z1:x]) are ordered lexicographically by key, each item is se-
quenced as follows:

* Text tokens (y1.x) are in the same order as the raw input text.
* Image patch tokens (x1.,) are in raster order.
* Tensors (z1:,) (such as discrete and continuous observations) are in row-major order.

— Separator (’|’); a designated separator token is provided after observations.
— Actions (aj.4) are tokenized as discrete or continuous values and in row-major order.

A full sequence of tokens is thus given as the concatenation of data from T timesteps:

1 1 1 1 T T T T
S1:L = [[yl:k’xl:m’zl:n” |I’ al:A]’ T [-yl:k’xlim’zltn” |” al:A]]J

where L =T(k+m+n+ 1+ A) is the total number of tokens.
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Gato Model — Training

* Output
* Only text tokens, discrete and continuous values, and actions.
* No image tokens or observations are used as output targets.

* Training
* Purely supervised learning

* Minimize log-loss on outputs
|B| L

_ (b) (b) (b) (b)
L(6,B) ——ZZm(b t)logpg(s; " |s; ) S]]

b=1 1=

Masking function
such at m(b,t)=1 for
output tokens, O
otherwise



Gato Model — Prompt

* Prompt to identify tasks

* ‘Prompt’ means the tokenized sequences of partitions of trajectories
* Training stage: 25% sequence in a batch are prepended a prompt sequence

* from an episode generated by the same source agent on the same task
* Half of the prompt are sampled from the end of the episode
* Half of the prompt are uniformly sampled from the episode

e Evaluation stage: a successful demo of the desired task.

= =
Observation T T
. Action

Fixed prompt (optional) Agent Agent



Gato Model — Inference Procedure

1. Start with prompt, such as a demonstration token sequence

2. For each timestep
« Sample the action vector autoregressively for one token at a time

* Once all tokens comprising the action vector have been sampled, decode the action
by inverting the tokenization procedure

* Deliver the action to the environment and get the new observation

* NOTE: The model always sees all previous observations and actions in its
context window of 1024 tokens.

= =
Observation T T
. Action

Fixed prompt (optional) Agent

Agent



Gato Experiments - Datasets

Control environment Tasks | Episodes [}Fl(j)ile?i \S;;Illg}llf Vision / language dataset 33;?;}11?
DM Lab 254 16.4M 194B 9.35% MassiveText 6.7%
ALE Atari 51 63.4K 1.26B 9.5% M3W 4%
ALE Atari Extended 28 28.4K 565M | 10.0% ALIGN 0.67%
Sokoban 1 27.2K 298M 1.33% MS-COCO Captions 0.67%
BabyAl 46 4.61M 22.8B | 9.06% Conceptual Captions 0.67%
DM Control Suite 30 395K 22.5B | 4.62% LTIP 0.67%
DM Control Suite Pixels 28 485K 35.5B 7.07% OKVQA 0.67%
DM Control Suite Random Small | 26 10.6M 313B 3.04% VQAV2 0.67%
DM Control Suite Random Large | 26 26.1M 791B 3.04% Total 14.7%
Meta-World 45 94.6K 3.39B | 8.96%

Procgen Benchmark 16 1.6M 4.46B | 5.34%

RGB Stacking simulator 1 387K 24.4B | 1.33%

RGB Stacking real robot 1 15.7K 980M | 1.33%

Modular RL 38 843K 69.6B | 8.23%

DM Manipulation Playground 4 286K 6.58B | 1.68%

Playroom 1 829K 118B 1.33%

Total 596 63M 1.5T 85.3%

return of episode i

* Data filtering

. . j+w-1 :
Expertreturn: . max i “Ri/W W = min(1000,0.1 x N)

 Select the episodes {i} with R; = 80% of expert return



Gato Experiments — Simulated Control

- 604
= 500 i Sokoban
0 mmm RGB Stacking simulator
= 450 mmw DM Manipulation Playground
2400 B DM Control Suite Pixels
3 mmm ALE Atari Extended
930 © Procgen Benchmark
E mmm ALE Atari
%5 Modular RL
b 20 B Meta-World
€ wen BabyAl
Z 100 === DM Control Suite
I B DM Lab
e
0 20 40 50 60 80 100
random policy Threshold as % of Expert Score expert policy

» 450/604 tasks: performance over 50% expert score
* E.g., ALE Atari: achieve average human (or better) scores for 23 games

 Computing resource for final training
e 16x16 TPUv3 cluster x 4 days =~ 1600 V100 GPU days =~ 480k RMB
e Batch size 512, token sequence length 1024

* Prospects (as previously mentioned)
* Reduce the need for handcrafting policy models.
* Generic models have tended to be better than domain-specific approaches.



Gato Experiments — Robotics

5 held out test triplets

Polygon Axis

Trapezoid Axis

Parallelogram Axis

Rectangle Axis

Triplet 1

Triplet 2

=3 Triplet 3

Triplet 4

Triplet 5

* Robotics - RGB Stacking Benchmark

Three plastic blocks colored red, green and blue with varying shapes
The goal is to stack red on blue, ignoring green

Observations: two 128 x 128 camera images, robot arm and gripper
joint angles, the robot’s end-effector pose
Two challenge settings

 Skill mastery: training provided the 5 test object triplets it is later tested on
» Skill generalization: training not provided 5 test object triplets



Gato Experiments — Robotics

Real robot Skill Mastery results. Gato is competitive with the filtered BC baseline.

AGENT ‘ Grour 1 ‘ GROUP 2 ‘ GRrOuUP 3 ‘ Grour 4 ‘ GroOuP 5 ‘ AVERAGE

GaTO 58% 57.6% 78.5% 89 %
BC-IMP (LEE ET AL., 2021) 75.6% 60.8% 70.8% 87.8%

95.1%
78.3%

75.6%
74.6%

Gato real robot Skill Generalization results. In addition to performing hundreds of
other tasks, Gato also stacks competitively with the comparable published baseline.

AGENT ‘ Grour 1 ‘ GROUP 2 ‘ GROUP 3 ‘ GRrRoOUP 4 ‘ GRrROUP 5 ‘ AVERAGE

GATO 24.5% 33% 50.5% 76.5% 66.5%
BC-IMP (LEE ET AL., 2021) 23% 39.3% 39.3% 77.5% 66%

50.2%
49%

* The standard “stack
red on blue” task
tested in the Skill
Generalization
benchmark.

* Results: robot successfully stacking the red object on the blue object, and the
data does not include the object shapes in the test set



Gato Experiments — Robotics

* The novel “stack blue
on green” task that
demonstrates Gato’s
out of distribution
adaptation to
perceptual variations.

* Additionally adding simulated demonstrations of the stack blue on green task
to the fine-tuning dataset improved performance.

1.0 Real Robot Skill Generalization 10 Simulated Skill Generalization

0.8 0.8
2 2
o 0.6 —‘--—-—--&T 0 0.6 ‘F'—_-g%f-"—
8 "’-— -~ ~ 8 -_*—— '—__, ———y
35 2 o= /’ y_]
wn 0.4 ()] 04 x’ ’7
X R , y

-, /’
0.2 0.2 s
,/} _—'./
0.0 0.0 "__—-———-.——_-'—
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# fine-tuning episodes # fine-tuning episodes
-=: 1.18B —— Expert —— CRR -=: 1.18B - = 364M -= 79M
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Gato Experiments — Image Captioning

The colorful ceramic toys are on Man standing in the street
the living room floor. wearing a suit and tie.

A bearded man is holding a
plate of food.

A man in a blue suit with a white
bow tie and black shoes.

a living room with three different
color deposits on the floor

Man holding up a banana to
take a picture of it.

A man with a hat in his hand
looking at the camera

a room with a long red rug a tv
and some pictures

a man smiles while holding up a
slice of cake

A baseball player pitching a ball
on top of a baseball field.

a white horse with a blue and
silver bridle

a couple of people are out in the
ocean

A white horse with blue and
gold chains.

A surfer riding a wave in the
ocean.

A man throwing a baseball at a
pitcher on a baseball field.

A horse is being shown behind
a wall.

A surfer with a wet suit riding a
wave.

A baseball player at bat and a
catcher in the dirt during a
baseball game

a group of people that is next to
a big horse

Atan horse holding a piece of
cloth lying on the ground.

Two horses are laying on their
side on the dirt.

Pistachios on top of a bowl with
coffee on the side.

A bowl and a glass of liquid sits
on a table.

A white plate filled with a
banana bread next to a cup of
coffee.

ng® 13
Man biting a kite while standing

on a construction site

a big truck in the middle of a
road

A truck with a kite painted on
the back is parked by rocks.

A group of children eating pizza
at a table.

Two boys having pizza for lunch
with their friends.

The boys are eating pizza
together at the table.

The first three captions sampled using temperature 0.9, without cherry-picking.



Gato Experiments — Dialogues

Do you have any fiction book recommendations?

| devoured a lot of science fiction in my youth. | recommend
Star Wars: Revenge of the Sith, Percy Jackson: The Lightning
Thief, and especially the books by J.G. Ballard, such as Stardust
and Canyon Song.

What is Canyon Song about?

Canyon Song is a novel about one of my favourites fictional
characters, Archangel Gabriel. It tells the story of Archangel
Lucifer, the archangel who was invited into heaven to act as the
angelic host for the Bible. Genesis, Revelation and company can
all be considered as Paradise Lost, and Dodecahedron
Assemblies was the publication | chose to read on the way to
heaven.

What is the Lightning theif about?

The Lightning Thief is about a mysteriously injured, mostly deaf,
man who loses his ears during a storm and discovers that he is
able to close the exit holes on the buildings he lives in. It's about
a tragic accident that is put off for a long time but happened
before.

Does it have a happy ending?

Yes, it does. The narrator is sad and wounded, but he still lives in
his damaged body. "Three years, four years. Oh, but | am sure ... it
is better. It is perfectly well. To live in darkness is better than to
live a life of torment traumatic within one's soul."

®

Explain the basics of black holes to me.

So | guess I'm trying to answer this simple question: "What's a
black hole?"

Indeed. Please go ahead

Black holes usually occur when a star dies and implodes in a
runaway reaction. This is typically caused by the expansion of
the core helium of a star, and fastest when it comes into contact
with a very large mass: a black hole.

Can you tell me about AlphaFold?

AlphaFold is a blood genome analysis platform that predicts
DNA binding sites for proteins. With my pipeline, | can analyze
up to 99,000 proteins in your blood, and | use machine learning
to infer detailed binding sites for the 22,000 proteins that test
positive in the test. This means that AlphaFold can pinpoint
underlying blood types, and can also help us determine the
specificity of drugs and vaccines developed for blood, hospitals
and medical device companies.

Why is it called AlphaFold? What is being folded?

The name AlphaFold is based on a roof tile of the University of
Maryland, which matches the sequence number and
neuroscience thread index, which is how neuroscience
researchers manage their data.

@ What is the capital of France?
G Marseille.

@ What is Marseille famous for?

G Jazz music.
@ Who are some famous Jazz musicians from Marseille?

G Herbie Hancock, John Coltrane, Tony Bennett, Etienne Wouter.

@ What is the capital of France?

G Paris!

What are some things to see in Paris?

€/

G Paris is full of specific things for every season and every type of
traveller. Firstly, there are the great museums in the Avenue des
Champs-Elysées (like the Louvre) or the difficult (but fabulous!)
Notre Dame cathedral. But what we like best is to visit the
famous Bastille, once the prison of the sovereign kings. This was
the scene of the Terror of 1789, when the Revolution began.

* Dialogues with Gato when it is prompted to be a chat bot. Usually Gato replies with a relevant response, but is
often superficial or factually incorrect, which could likely be improved with further scaling.
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Summary of Big Decision-Making Models

* Main idea: leverage the power of large sequence models (transformers)
to generate good actions given the conditions

* Decision transformer
* A policy outputs the action conditioning on state, action, return-to-go pre-sequence
e Offline supervised learning

* Trajectory transformer

* A world model to autoregressively generate the next state, action, reward
conditioning on state, action, reward pre-sequence

» Take actions via planning with beam search (or RL policies)

 Both DT and TT are specialist agents

* Gato — a generalist agent N % % ﬁ
e Multi-task, multi-model, Action

multi-embodiment
* Prompt to identify tasks
e Purely supervised learning Fixed prompt (optional)



Content

* Review the process of reinforcement learning
* Transformers in decision-making tasks
* Gato: a generalist agent

e Discussion and prospects



Discussion and Prospects

* Now it seems supervised learning has become comparable
with reinforcement learning on decision-making tasks

* Transformer: model complex sequential patterns and deal with
compounding error problems

* Huge dataset: sufficient data to train the transformer

* Offline training: do not require the agent with interact with the
environment during training

* Near-future research on this direction

* Environment model: build better world models
Data: how to collect the data for more effective training
Goal: better goal representation in decision transformers
Transfer: zero-shot transfer
MIARL: multi-agent decision-making tasks



Discussion and Prospects

~ K

7 = argmax B a)va,  [m(s,a)logm(als)]

* In traditional RL, m(s, a) is the value function corresponds to Q™ (s, a)
* Learned by TD propagation
* Need the agent to interact with environment

* In big DM models, m(s, a) is a masking (or weighting) function
* Just predefined by rule
* No need to interact with environment



Thank You!
Questions?

Weinan Zhang

Associate Professor

APEX Data & Knowledge Management Lab
Department of Computer Science and Engineering
Shanghai Jiao Tong University

http://wnzhang.net



